

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Дисциплина	БИОХИМИЯ
Факультет	Экологический
Кафедра	Общей и биологической химии
Курс	1,2

Направление (с	специальность)	31.05.02	Педиатрия
----------------	----------------	----------	-----------

Направленность

(профиль/специализация)

Врач педиатр

Форма обучения очная

Дата введения в учебный процесс УлГУ:

01.09.2019 г.

Программа актуализирована на заседании кафедры: протокол №1 от 08.09.2020 г.

Программа актуализирована на заседании кафедры: протокол №_____ от ____ 20_____г.

Программа актуализирована на заседании кафедры: протокол №____ от ___ 20____г.

Сведения о разработчиках:

ФИО	Кафедра	Должность,	
ΨΗΟ	Кафедра	ученая степень, звание	
Еникеев Э.Ш.	Общей и	к.б.н., доцент	
Терёхина Н.В.	биологической	к.б.н., доцент	
	химии		

СОГЛАСОВАНО	СОГЛАСОВАНО
Заведующий кафедрой общей и биологиче-	Заведующий выпускающей кафедрой
ской химии, реализующей дисциплину	педиатрии
/ Шроль О.Ю. 17.06.2019	/ Соловьева И.Л. 17.06.2019

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цели освоения дисциплины:

- формирование системных знаний о химическом составе и молекулярных процессах организма человека как о характеристиках нормы и о признаках патологических состояний, необходимых при изучении последующих дисциплин и при профессиональной деятельности.
- формирование системных знаний, которые необходимы студентам при рассмотрении биохимической сущности и механизмов процессов, происходящих в живых системах на молекулярном и клеточном уровнях.
- формирование биохимического подхода при оценке параметров этих процессов, что позволит более глубоко понять взаимодействие всех систем организма в норме и при патологии, а также его взаимодействие с окружающей средой.

Задачи освоения дисциплины:

- 1. освещение ключевых вопросов программы; материал лекций призван стимулировать студентов к последующей самостоятельной работе.
- 2. формирование умений и навыков для решения проблемных и ситуационных задач;
- 3. формирование практических навыков постановки и выполнения экспериментальной работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОПОП:

- Дисциплина «Биохимия» относится к профессиональному циклу, базовая часть (Б1.Б.12).
- Для изучения дисциплины необходимы знания вопросов предшествующих изучаемых дисциплин биология, химия, анатомия, физиология.
- Изучение данной дисциплины приведет к
 - формированию комплекса знаний, которые необходимы студентам при рассмотрении биохимической сущности и механизмов процессов, происходящих в живых системах на молекулярном и клеточном уровнях.
 - формированию биохимического подхода при оценке параметров этих процессов, что позволит более глубоко понять взаимодействие всех систем организма в норме и при патологии, а также его отношения с окружающей средой.

3. ПЕРЕЧЕНЬ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ, СООТНЕСЕНЫХ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Изучение дисциплины «Биохимия» в рамках освоения ОПОП 31.05.02 Педиатрия направлено на формирование у обучающихся следующих компетенций

Код соответ- ствующей ком-	Наименование компетен- ций	Результат освоения (знать, уметь, владеть)
петенции по ФГОС		
ОПК-7	Готовность к использова-	Знать:
	нию основных физико-	Особенности протекания метаболиче-
	химических, математиче-	ских процессах в различных органах и
	ских и иных естественно-	тканях.
	научных понятий и мето-	Принципы биохимических методов ди-
	дов при решении профес-	агностики заболеваний различных ор-

Форма А Страница 2 из 27

	T	1
	сиональных задач	ганов.
		Уметь:
		Анализировать результаты физико-
		химических методов анализа.
		Интерпретировать данные лаборатор-
		ных исследований.
		Владеть:
		Методикой работы с применением фи-
		зико-химических методов исследова-
		ния.
		Методами анализа результатов физико-
		химических методов исследования.
ОПК-9	Способность к оценке	Знать:
	морфофункциональных,	Особенности регуляции и саморегуля-
	физиологических состоя-	ции функциональных систем организма
	ний и патологических про-	в норме и при патологических процес-
	цессов в организме челове-	cax.
	ка для решения професси-	Принципы биохимических методов ди-
	ональных задач	агностики заболеваний.
		Уметь:
		Использовать знания об особенностях
		регуляции и саморегуляции функцио-
		нальных систем для оценки состояния
		организма.
		Анализировать результаты биохимиче-
		ских исследований для постановки диа-
		гноза.
		Владеть:
		Навыками постановки предварительно-
		го диагноза на основании результатов
		биохимических исследований биологи-
		ческих жидкостей.
		Современными методами биохимиче-
		ского анализа.
		VIOLO HIMITION.

4. ОБЩАЯ ТРУДОЕМКОСТЬ ДИСЦИПЛИНЫ

4.1. Объем дисциплины в зачетных единицах (всего): 7 ЗЕ

4.2. По видам учебной работы (в часах): 252

Вид учебной работы	Количество часов 252			
	Всего по плану	в т.ч. по семестрам		
		2	3	
1	2	3		
Контактная работа				
обучающихся с препо-	144			
давателем				
Аудиторные занятия:				
Лекции	36/4*	18/2*	18/2*	

Форма А Страница 3 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Практические и семи- нарские занятия	-	-	
Лабораторные работы (лабораторный практикум)	108/8*	54/4*	54/4*
Самостоятельная работа	72	54	18
Текущий контроль (количество и вид: контрольная работа, коллоквиум, реферат)	Тестирование, устный опрос, защита лабораторных работ	Тестирование, устный опрос, за- щита лаборатор- ных работ	Тестирование, устный опрос, защита лабораторных работ
Курсовая работа	не предусмотрена	не предусмотрена	не предусмотрена
Виды промежуточной аттестации (экзамен, зачет)	экзамен 36		экзамен 36
Всего часов по дисциплине	252/12*	126/6*	126/6*

^{*-}количество часов, проводимых в интерактивной форме

4.3. Содержание дисциплины. Распределение часов по темам и видам учебной работы:

		Виды учебных занятий			Форма
Название и разделов и	Всего	Аудитор	Аудиторные занятия Самостоя		текущего
тем	bcero	лекции	лабораторная		контроля
		·	работа	работа	знаний
Разде	ел 1. Статич	ческая биох	кимия		
1. Предмет, задачи и история развития биохимии. Связь с медициной.	4	1	-	3	Тестирование, устный опрос, защита лабораторных работ
2.Строение, свойства и функции белков	11	2*	6	3	Тестирование, устный опрос, защита лабораторных работ
3. Ферменты, классификация, строение, свойства, функции и механизм действия	11	2	6	3	Тестирование, устный опрос, защита лабораторных работ
4. Строение и функции нуклеиновых кислот	11	2	6	3	Тестирование, устный опрос, защита лабораторных работ
5. Биосинтез	10	1	6	3	Тестирование,

Форма А Страница 4 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

	T		T		
нуклеиновых кислот и белка					устный опрос, защита
					лабораторных работ
6. Молекулярные механизмы генетической изменчивости	10	1	6	3	Тестирование, устный опрос, защита лабораторных работ
Разлел	і 2. Линами	ческая био	химия.		1
1 4340.		ICCNAMI ONO			Тестирование,
1. Введение в обмен веществ. Витамины.	4	1	-	3	устный опрос, защита лабораторных работ
2. Биологические мембраны. Транспорт веществ через мембрану	10	1	6	3	Тестирование, устный опрос, защита лабораторных работ
3. Энергетический обмен.	11	2	6	3	Тестирование, устный опрос, защита лабораторных работ
4. Общий путь катаболизма	11	2*	6	3	Тестирование, устный опрос, защита лабораторных работ
5. Обмен и функции углеводов	12	2	6	4	Тестирование, устный опрос, защита лабораторных работ
6. Обмен и функции липидов	12	2	6	4	Тестирование, устный опрос, защита лабораторных работ
7. Обмен и функции аминокислот	11	2	6	3	Тестирование, устный опрос, защита лабораторных работ
8. Обмен и функции нуклеотидов	12	2	6	4	Тестирование, устный опрос, защита

Форма А Страница 5 из 27

Ф - Рабочая программа по дисциплине

Форма

					лабораторных
Разпел	<u> </u> 3. Функцио	шаш цад би	ONNMA		работ
1. Гормональная регуляция обмена веществ. Гормоны гипоталамуса и гипофиза. Гормональная регуляция углеводного, белкового и липидного обмена; водноминерального обмена. Роль почек в регуляции водно-минерального обмена.	12	2	6	4	Тестирование, устный опрос, защита лабораторных работ
2. Регуляция обмена Ca ²⁺ и фосфатов. Половые гормоны. Гормоны щитовидной железы. Гормоны местного действия	6	2		4	Тестирование, устный опрос, защита лабораторных работ
3. Биохимия межклеточного матрикса	10	1	6	3	Тестирование, устный опрос, защита лабораторных работ
4. Биохимия мышц	10	1	6	3	Тестирование, устный опрос, защита лабораторных работ
5. Биохимия крови. Биохимический анализ крови	11	2	6	3	Тестирование, устный опрос, защита лабораторных работ
6. Биохимия иммунной системы.	10	1	6/4*	3	Тестирование, устный опрос, защита лабораторных работ
7. Биохимия печени	11	1	6/4*	4	Тестирование, устный опрос, защита лабораторных работ
8. Биохимия нервной системы. Биохимия памяти.	3	2	-	1	Тестирование, устный опрос, защита

Форма А Страница 6 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

					лабораторных работ
9. Фармацевтическая биохимия. Метаболизм лекарств.	3	1	-	2	Тестирование, устный опрос, защита лабораторных работ
Итого	216/12*	36/4*	108/8*	72	

^{*-}количество часов, проводимых в интерактивной форме.

Используемые интерактивные образовательные технологии

В процессе изучения дисциплины, с целью формирования и развития профессиональных навыков обучающихся, наряду с традиционными видами занятий, проводятся занятия в интерактивных формах: компьютерных симуляций, деловых и ролевых игрсеминаров, разбор конкретных ситуаций, в сочетании с внеаудиторной работой. В рамках учебного курса предусмотрены встречи с представителями российских и зарубежных университетов и научных организаций, мастер-классы экспертов и специалистов.

Лекции проводятся в следующих формах: лекция-визуализация (с использованием различных форм наглядности: компьютерные симуляции, рисунки, фото, схемы и таблицы), лекция-консультация (осуществляемая в формате «вопросы – ответы»), проблемная лекция и лекция с заранее запланированными ошибками.

Практические занятия проводятся в следующих формах: коллективный разбор решения ситуационных задач на основе анализа подобных задач, анализ результатов демонстрационного эксперимента, а также выполнение исследовательских работ частично-поискового характера.

5. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

Раздел 1. Статическая биохимия

Тема 1. Предмет, задачи и история развития биохимии. Связь с медициной.

Предмет и задачи биологической химии. Обмен веществ и энергии, иерархическая и структурная организация и самовоспроизведение как важнейшие признаки живой материи. Гетеротрофные а автотрофные организмы. Мультимолекулярные системы (метаболические цепи, мембранные процессы, системы синтеза биополимеров, молекулярные регуляторные системы) как основные объекты биохимического исследования. Место биохимии среди других дисциплин; уровни организации живого. Биохимия как молекулярный уровень изучения явлений жизни. Основные разделы и направления в биохимии: биоорганическая химия, динамическая и функциональная биохимия, молекулярная биология. Биохимия и медицина (медицинская биохимия). История, основные достижения и направления развития биохимии.

Тема 2. Строение, свойства и функции белков.

История изучения белков. Пептидная теория строения белков. Пептидная (амидная) связь и ее свойства. Первичная структура белков. Зависимость биологических свойств белков от первичной структуры. Видовая специфичность первичной структуры белков (инсулины разных животных). Основные аминокислоты; классификация. Нестандартные аминокислоты. Конформация пептидных цепей в белках (вторичная и третичная структуры). Слабые внутримолекулярные взаимодействия в полипептидной цепи (водородные связи ближнего порядка, ионного и гидрофобного взаимодействия),

Форма А Страница 7 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

дисульфидные связи. Зависимость биологических свойств белков от вторичной и третичной структуры. Денатурация белков; обратимость денатурации (ренатурация).

Глобулярные и фибриллярные белки. Простые и сложные белки. Четвертичная структура. Физико-химические свойства белков: растворимость, ионизация, гидратация; осаждение белков из растворов. Методы выделения, очистки и количественного измерения концентрации белков. Экспериментальное определение последовательности аминокислот в полипептидной цепи.

Четвертичная структура белков. Зависимость биологической активности белка от четвертичной структуры; понятие субъединицы; кооперативные изменения конформации субъединиц протомеров (на примере гемоглобина в сравнении с миоглобином): сродство к кислороду, эффект Бора. Молекулярные болезни (на примере аномальных форм гемоглобина).

Биологические функции белков. Способность к специфическим взаимодействиям («узнавание») как основа биологических функций всех белков. Комплементарность структуры центра связывания белка структуре лиганда. Обратимость связывания; зависимость связывания от концентрации лиганда. Ферменты, белки-рецепторы, транспортные белки, антитела, белковые гормоны, сократительные белки, структурные белки. Многообразие структурно и функционально различных белков. Количественное определение индивидуальных белков на основе специфичности связывания лиганда, специфичности катализа.

Методы выделения индивидуальных белков: фракционирование солями и органическими растворителями, ионообменная хроматография. Электрофорез, гельфильтрация, афинная хроматография.

Кристаллизация белков. Различия белкового состава органов. Изменение белкового состава при онтогенезе и болезнях.

Тема 3. Ферменты, классификация, строение, свойства, функции и механизм действия

История открытия и изучения ферментов. Особенности ферментативного катализа и его отличие от неферментативного катализа. Структурно-функциональная организация ферментов. Специфичность действия ферментов. Классификация и номенклатура ферментов. Изоферменты. Кинетика ферментативных реакций. Зависимость ферментативных реакций от температуры, рН, концентраций фермента и субстрата. Единицы измерения активности и количества ферментов. Кофакторы ферментов: ионы металлов и коферменты. Коферментные функции витаминов (на примере трансаминаз и витамина B_6).

Ингибиторы ферментов: обратимые и необратимые; конкурентные и безконкурентные. Лекарственные препараты — ингибиторы ферментов. Регуляция действия ферментов: аллостерические модуляторы (ингибиторы и активаторы). Активный центр, строение и механизмы функционирования; каталитические и регуляторные центры; четвертичная структура аллостерических ферментов и кооперативные изменения конформации субъединиц фермента. Регуляция активности ферментов путем ковалентной модификации фосфорилирования и дефосфорилирования, метилирования и др. понятие регуляторного фермента.

Органоспецифические ферменты. Изоферменты и их изменчивость в онтогенезе и значение для диагностике заболеваний (на примере ЛДГ, МДГ и др.). Изменения активности ферментов при болезнях. Наследственные энзимопатии. Определение

Форма А Страница 8 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

ферментов в плазме крови с целью диагностики болезней (энзимодиагностика). Применение ферментов для лечения болезней (энзимотерапия). Иммобилизованные ферменты.

Тема 4. Строение и функции нуклеиновых кислот.

История открытия и изучения нуклеиновых кислот. Нуклеотиды: строение и номенклатура. Первичная структура нуклеиновых кислот. Видовые различия первичной структуры нуклеиновых кислот. Вторичная структура РНК. Двойная спираль ДНК. Денатурация и ренатурация (ренативация) ДНК. Гибридизация ДНК – ДНК и ДНК – РНК; Рибосомы и рибосомные РНК. Полирибосомы и матричные РНК. Строение хроматина. Транспортные РНК.

Тема 5. Биосинтез нуклеиновых кислот и белка

Биосинтез ДНК (репликация). Репликация и ее связь с фазами клеточного цикла Реакции процесса; ДНК — полимеразы; и другие ферменты репликативного комплекса; соответствие первичной структуры продукта реакции первичной структуре матрицы. Репликация вирусного генома разных типов. Повреждения и репарация ДНК. Наследственные заболевания, связанные с нарушением механизма репарации.

Биосинтез РНК (транскрипция). РНК – полимераза; стехиометрия реакции; ДНК как матрица. Понятие о первичном транскрипте (гетерогенной ядерной РНК), посттранскрипционной модификации РНК (созревание или процессинг),.

Биосинтез белков. Матричная РНК. Основной постулат молекулярной биологии (ДНК – мРНК – белок). Свойства генетического кода. Теория неоднозначного соответствия (теория качаний). Адапторная роль транспортной РНК. Биосинтез аминоацил – тРНК. Изоакцепторные тРНК.

Последовательность событий при образовании полипептидной цепи: связывание рибосом с мРНК, связывание аминоацил тРНК с рибосомой и мРНК, образование пептидной связи, транслокация пептидил — тРНК. Терминация синтеза. Белковые комплексы, осуществляющие процесс трансляции. Функционирование полирибосом.. Синтетические лекарственные препараты, влияющие на матричные синтезы. Антибиотики — ингибиторы синтеза нуклеиновых кислот и белков.

Посттрасляционная модификация белков в эндоплазматическом ретикулуме и аппарате Гольджи.

Регуляция биосинтеза белков. Понятие об опероне и регуляция на уровне транскрипции. Регуляция на уровне репликации и трансляции. Транспорт белков в клетке и встраивание их в мембраны.

Тема 6. Молекулярные механизмы генетической изменчивости.

Мутагенез. Молекулярные мутации: замены, перестановки делеции, вставки нуклеотидов. Частота мутаций, зависимость от условий среды (радиация, химические мутагены). Механизмы увеличения числа генов в геноме в ходе биологической эволюции. Генотипическая гетерогенность в популяции человека. Рекомбинации как источник генетической изменчивости.

Полиморфизм белков. Варианты гемоглобина, некоторых ферментов. Система групп крови.

Наследственные болезни; распространенность и происхождение дефектов в генотипе; биохимические механизмы развития болезни. Многообразие наследственных болезней. Биохимические методы в генетической консультации и в диагностике наследственных болезней. Наследственная предрасположенность к некоторым болезням (биохимические основы). Международная исследовательская программа "Геном человека". Генная инженерия. ДНК-полимеразная цепная реакция (ПЦР) как метод Форма А

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

изучения генома и метод диагностики болезней.

Раздел 2. Динамическая биохимия.

Тема 1. Введение в обмен веществ. Витамины.

Обмен веществ: питание, метаболизм и выделение продуктов метаболизма. Состав пищи человека. Органические и минеральные компоненты. Основные и минорные компоненты.

Основные пищевые вещества: углеводы, жиры, белки; суточная потребность, переваривание; частичная взаимозаменяемость при питании. Незаменимые компоненты основных пищевых веществ. Независимые аминокислоты; пищевая ценность разных белков. Белковая недостаточность. Линолевая кислота — незаменимая жирная кислота.

Витамины. Классификация витаминов. История открытия и изучения витаминов. Функции витаминов. Алиментарные и вторичные авитаминозы и гиповитаминозы. Гипервитаминозы.

Минеральные вещества пиши. Региональные патологии, связанные с недостатком микроэлементов в пище и воде.

Понятие о метаболизме, центральных метаболических путях (катаболизм, анаболизм, амфиболизм). Ферменты и метаболизм. Понятие о регуляции метаболизма. Концентрация метаболитов: пределы изменений в норме и при патологии. Основные конечные продукты метаболизма у человека: углекислый газ, мочевина. Другие продукты выделения.

Методы изучения обмена веществ.

Тема 2. Биологические мембраны. Транспорт веществ через мембрану

Жидкостно-мозаичная модель мембраны. Липидный состав мембран и строение липидного бислоя. Белки мембран. Гликолипиды и гликопротеины мембран. Общие своиства мембран: текучесть, поперечная асимметрия, избирательная проницаемость.

Механизмы переноса веществ через мембраны. Пассивный транспорт (простая и облегченная диффузия). Транспортные белковые системы пассивного транспорта. Первичный активный транспорт, транспортные АТфазы, вторичный активный транспорт углеводов и аминокислот. Унипорт и котранспорт; симпорт и антипорт.

Разнообразие мембранных структур и функций мембран. Образование, строение, функции лизосом. Аутолиз тканей. Роль повреждения лизосом при воспалении и других патологических процессах. Мембранные белки- рецепторы; трансмембранная передача сигналов в клетку. Антибиотики как транспортные системы.

Тема 3. Энергетический обмен.

Строение митохондрий и структурная организация дыхательной цепи (цепи переноса электронов). Дегидрирование субстратов и окисление водорода (образование воды) как источник энергии для синтеза АТФ. НАД-зависимые и флавиновые дегидрогеназы. НАДН-дегидрогеназы, убихинол-дегидрогеназа (цитохром С редуктаза). Цитохром С оксидаза.

Форма А Страница 10 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Окислительное фосфорилирование, коэффициент Р/О. Сопряжение дыхания и окислительного фосфорилирования. Трансмембранный электрохимический потенциал как промежуточная форма энергии при окислительном фосфорилировании. Механизм синтеза АТФ, катализируемый АТФ-синтетазой. Регуляция цепи переноса электронов (дыхательный контроль).

Разобщение тканевого дыхания и окислительного фосфорилирования. Терморегуляторная функция тканевого дыхания. Природный механизм разобщения и холодовая адаптация.

Нарушения энергетического обмена; гипоксические состояния. Витамины РР и В₆. Проявления авитаминоза. Возрастная характеристика энергетического обеспечения организма питательными веществами.

Тема 4. Общий путь катаболизма.

Катаболизм основных пищевых веществ - углеводов, жиров, белков (аминокислот); понятие о специфических путях катаболизма (до образования пирувата из углеводов и большинства аминокислот и до образования ацетил-КоА из жирных кислот и некоторых аминокислот) и общем пути катаболизма (окисление пирувата до ацетил-КоА).

Окислительное декарбоксилирование пирувата: последовательность реакций, строение пируватдегидрогеназного комплекса. Медицинское значение процесса (ингибиторы пируватдегидрогеназного комплекса - соли тяжелых металлов, алкоголь и др.) Регуляция процесса.

Цикл лимонной кислоты: последовательность реакций, характеристика и локализация ферментов. Связь между общим путем катаболизма и цепью переноса электронов и протонов. Аллостерические механизмы регуляции цитратного цикла. Образование углекислого газа при тканевом дыхании. Амфиболическая природа цикла лимонной кислоты, его связь с анаболическими процессами. Понятие об анаплеротических (возмещающих) реакциях. Витамин B_1 и пантотеновая кислота. Проявления авитаминоза.

Тема 5. Обмен и функции углеводов.

Основные углеводы животных, их содержание в тканях, биологическая роль. Основные углеводы пищи. Переваривание и всасывание углеводов в желудочно-кишечном тракте.

Катаболизм глюкозы (гликолиз). Распад в аэробных условиях - основной путь катаболизма глюкозы у человека. Последовательность реакций до образования пирувата (гликолиз) как специфический для глюкозы путь катаболизма. Регуляция процесса, лимитирующие реакции. Челночные механизмы (глицерофосфат-диоксиацетатный, малат - аспартатный, ацетоцетат - р-оксибутират-ный). Распространение и физиологическое значение распада глюкозы. Использование глюкозы в аэробных условиях для синтеза жиров в печени и жировой ткани. Особенности протекания гликолиза в анаэробных условиях.

Эффект Пастера. Биосинтез глюкозы (глюконеогенез) из молочной кислоты. Взаимосвязь гликолиза в мышцах и глюконеогенеза в печени (цикл Кори). Основные источники субстратов для глюконеогенеза (лактат, пируват, гликогеновые аминокислоты и др.).

Пентозофосфатный путь превращений глюкозы. Окислительные реакции. Суммарные результаты пентозофосфатного пути: образование НАДФН и пентоз. Распространение и физиологическое значение. Пентозофосфатный путь и фотосинтез. Взаимопревращения гексоз. Обмен фруктозы и галактозы.

Форма А Страница 11 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Свойства и распространение гликогена как резервного полисахарида. Биосинтез гликогена. Мобилизация гликогена. Аллостерическая и гормональная регуляция процессов. Особенности обмена глюкозы в разных органах и клетках: эритроциты, мозг, мышцы, жировая ткань, печень. Роль инсулина, глюкагона, адреналина, аденилатциклазной системы и протеинкиназ.

Представление о строении и функциях углеводной части гликопротеинов. Сиаловые кислоты.

Наследственные нарушения обмена моносахаридов и дисахаридов; галактоземия, непереносимость фруктозы, непереносимость дисахаридов. Гликогенозы и агликогенозы.

Тема 6. Обмен и функции липидов.

Важнейшие липиды тканей человека. Резервные липиды (жиры) и липиды мембран (сложные липиды).

Обмен жирных кислот. β - Окисление жирных кислот. Энергетика процесса. Синтез кетоновых тел. Биосинтез жирных кислот из ацетил-КоА и использование ацетоуксусной кислоты. Физиологическое значение этого процесса.

Обмен жиров. Пищевые жиры и их переваривание. Всасывание продуктов переваривания. Нарушения переваривания и всасывания. Ресинтез триацилглицеролов в стенке кишечника. Транспортные липопротеины, их состав и строение, специфичность и взаимопревращения. Образование хиломикронов и транспорт жиров. Биосинтез жиров из углеводов в печени, упаковка в ЛОНП и транспорт. Гиперлипопротеинемия.

Резервирование и мобилизация жиров в жировой ткани: регуляция синтеза и мобилизации жиров. Роль инсулина, глюкагона и адреналина. Транспорт жирных кислот альбуминами крови. Физиологическая роль резервирования и мобилизации жиров в жировой ткани. Нарушение этих процессов при ожирении.

Обмен стероидов. Холестерин как предшественник ряда других стероидов. Представление о биосинтезе холестерола. Восстановление гидроксиметилглутарил-КоА (ГМГ) в мевалоновую кислоту. Регуляция синтеза холестерола. Превращение холестерола в желчные кислоты, и регуляция процесса. Выведение желчных кислот и холестерола из организма. Обмен транспортных липопротеинов. Механизмы и маршруты транспорта жиров и холестерола. Гиперхолестеролемия и ее причины. Механизмы возникновения желчекаменной болезни (холестероловые камни). Биохимия атеросклероза. Механизм образования атеросклеротических бляшек. Биохимические основы лечения гиперхолестеролемии и атеросклероза.

Основные фосфолипиды и гликолипиды тканей человека: глицерофосфолипиды (фосфатидилхолины, фосфатидилэтаноламины, фосфатидилсерины), сфингофосфолипиды, гликоглицеролипиды, гликосфинголипиды. Представление о биосинтезе в ЭПР и катаболизме этих соединений. Функции фосфолипидов и гликолипидов. Сфинголипидозы.

Тема 7. Обмен и функции и аминокислот.

Общая схема источников и путей расходования аминокислот в тканях. Динамическое состояние белков в организме.

Переваривание белков. Протеиназы - пепсин, трипсин, химотрипсин; проферменты протеиназ и механизмы их превращения в ферменты; субстратная специфичность протеиназ (избирательность гидролиза пептилных связей). Экзопептидазы: карбоксипептидаза, аминопептидазы, дипептидазы. Всасывание аминокислот.Диагностическое значение биохимического анализа желудочного и дуоденального сока. Протеиназы поджелудочной железы и панкреатиты. Применение Форма А Страница 12 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

ингибиторов протеаз для лечения панкреатитов.

Трансаминирование: аминотрансферазы, коферментная функция витамина B_6 . Специфичность аминотрансфераз. Аминокислоты, участвующие в трансаминировании; особая роль глутаминовой кислоты. Биологическое значение реакций трансаминирования. Определение трансаминаз в сыворотке крови при диагностике инфаркта миокарда, заболевания печени. Окислительное дезаминирование аминокислот; глуматдегидрогеназа. Непрямое дезаминирование аминокислот. Биологическое значение дезаминирования аминокислот. Декарбоксилирование аминокислот, модификация боковой цепи.

Конечные продукты азотистого обмена: соли аммония и мочевина. Основные источники аммиака в организме. Роль глутамина в обезвреживании и транспорте аммиака. Глутамин как донор амидной группы при синтезе ряда соединений. Глутаминаза почек; образование и выведение солей аммония. Активация глутаминазы почек при ацидозе. Биосинтез мочевины и его регуляция. Связь орнитинового цикла с превращениями фумаровой и аспаргиновой кислот; происхождение атомов азота мочевины. Нарушения синтеза и выведение мочевины. Гипераммониемия.

Биогенные амины: гистидин, серотонин, гаммааминомасляная кислота, катехоламины. Происхождение; функции. Дезаминирование и гидроксилирование биогенных аминов.

Трансметилирование. Метионин и 5-аденозилметионин. Синтез креатина, адреналина, фосфатидилхолинов. Тетрагидрофолиевая кислота и синтез одноуглеродных групп; использование одноуглеродных групп, переносимых тетрагидрофолиевой кислотой. Метилирование гомоцистеина. Проявление недостаточности фолиевой кислоты. Антивитамины фолиевой кислоты. Сульфаниламидные препараты.

Обмен фенилаланина и тирозина. Фенилкетонурия: биохимический дефект, проявление болезни, методы предупреждения (генетическая консультация), диагностика и лечение. Алкаптонурия. Нарушение синтеза дофамина при паркинсонизме. Обмен глицина и серина и треонина.

Обмен безазотистого остатка аминокислот. Гликогенные и кетогенные аминокислоты. Синтез глюкозы из аминокислот. Синтез аминокислот из глюкозы. Аминокислоты как лекарственные препараты.

Тема 8. Обмен и функции нуклеотидов.

Катаболизм нуклеотидов в желудочно-кишечном тракте. Нуклеазы пищеварительного тракта и тканей.

Обмен пуриновых нуклеотидов. Катаболизм пуриновых нуклеотидов в тканях, образование мочевой кислоты. Регуляция катаболизма пуриновых оснований. Биосинтез пуриновых нуклеотидов; регуляция биосинтеза и распада, начальные стадии биосинтеза (от рибозо-5-фосфата до 5-фосфорибозиламина). Инозиновая кислота как предшественник адениловой и глутамиловой кислот.

Обмен пиримидиновых нуклеотидов. Распад и биосинтез пиримидиновых нуклеотидов и их регуляция. Координация биосинтеза пуриновых и пиримидиновых нуклеотидов. Процессы реутилизации нуклеотидов. Нарушения обмена нуклеотидов. Подагр. Ксантинурия. Оротацидурия.

Биосинтез дезоксирибонуклеотидов. Биосинтез тимидиловых нуклеотидов. Регуляция процессов.

Раздел 3. Функциональная биохимия

Тема 1. Гормональная регуляция обмена веществ. Гормоны гипоталамуса и гипофиза. Гормональная регуляция углеводного, белкового и липидного обмена; водноминерального обмена. Роль почек в регуляции водно-минерального обмена.

Форма А Страница 13 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Основные механизмы регуляции метаболизма: 1) изменения активности ферментов (активация и ингибирование); 2) изменения количества ферментов в клетке (индукция или репрессия синтеза, изменение скорости разрушения фермента); 3) изменения проницаемости клеточных мембран. Гормональная регуляция как механизм межклеточной и межорганной координации обмена веществ. Клетки-мишени и клеточные рецепторы гормонов. Механизмы передачи гормонального сигнала эффекторным системам (трансдукция). Гормоны гипоталамуса и гипофиза, либерины, статины, тропные гормоны. Механизмы регуляции внутренней секреции.

Строение, биосинтез и регуляция секреции инсулина, глюкагона, адреналина и кортизола. Роль этих гормонов в регуляции обмена углеводов, жиров и аминокислот. Кортикоиды, биосинтез из кортикостена. Антианаболическое действие кортикоидов. Нарушения обмена при гиперкортицизме и гипокортицизме. Изменения обмена углеводов, жиров и аминокислот при полном голодании и при сахарном диабете. Биохимия осложнения сахарного диабета.

Регуляция водно-солевого обмена.

Строение и функции альдостерона и антидиуретического гормона. Ренин - ангиотензиновая система. Биохимические механизмы возникновения почечной гипертонии, отеков, обезвоживания тканей. Почка как инкреторный орган. Роль почек в регуляции деятельности сердечно-сосудистой системы и кроветворения.

Характеристика основных функций почек (мочеобразованельная, регуляторногемостатическая, обезвреживающая, внутрисекреторная).

Роль почек в поддержании осмотического давления, водно-электролитного баланса и кислотно-основного равновесия.

Общие свойства мочи (количество, цвет, плотность, реакция), изменения при патологии. Основные химические компоненты мочи, их возможные изменения при заболеваниях. Факторы, способствующие образованию мочевых камней.

Tема 2. Регуляция обмена Ca^{2+} и фосфатов. Половые гормоны. Гормоны щитовидной железы. Гормоны местного действия

Функции, распределение в организме и регуляция обмена кальция. Транспорт кальция через мембраны, механизмы депонирования кальция. Медиаторная роль кальмодулина в реакциях, активируемых кальцием. Механизмы действия кальция как вторичного внутриклеточного посредника в длительных реакциях, регулируемых пептидными гормонами (тонические сокращения гладкой мускулатуры, синтез и секреция ряда гормонов и др.). Паратгормон, кальцитриол (1,2-диоксихолекальциферол) и кальцитонин: механизмы влияния на обмен кальция. Причины проявления рахита, гипокальциемии и гиперкальциемии.

Тироксин. Строение и биосинтез. Изменения обмена веществ при гипертиреозе (базедова болезнь). Механизмы возникновения эндемического зоба и его предупреждение. Половые гормоны: строение, синтез и влияние на обмен веществ и функции половых желез, матки и молочных желез. Диабетическое действие андрогенов. Гормон роста, строение, функции. Механизм действия стероидных гормонов (на примере β-эстрадиола). Диагностическое значение количества рецепторов эстрогенов.

Эйкозаноиды и их роль в регуляции метаболизма и физиологических функций. Кининовая система и ее функции. Биохимические изменения при воспалении.

Тема 3. Биохимия межклеточного матрикса.

Основные структурные компоненты внеклеточного матрикса и их организация. Коллаген: особенности аминокислотного состава, первичной и пространственной структуры, биосинтеза. Роль аскорбиновой кислоты в гидроксилировании пролина и лизина. Проявление недостаточности витамина С. Образование коллагеновых волокон. Гликозамингликаны и протеогликаны: строение, функции и образование в аппарате Форма А

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Гольджи. Особенности строения и функций эластина.

Структурная организация межклеточного матрикса. Изменения соединительной ткани при старении, коллагенозах, заживлении ран. Оксипролинурия при коллагенозах..

Тема 4. Биохимия мышц.

Важнейшие белки миофибрилл: миозин, тропонин. актин, актомиозин, Молекулярная структура миофибрилл. Биохимические мышечного механизмы сокращения и расслабления. Роль градиента одновалентных ионов и ионов кальция в регуляции мышечного сокращения. Саркоплазматические белки: миоглобин, его строение и функции. Экстрактивные вещества мышц. Особенности энергетического обмена в мышцах; креатинфосфат. Особенности обмена в сердечной мышце. Биохимические изменения при мышечных утомлениях, дистрофиях и денервации мышц. Креатинурия.

Тема 5. Биохимия крови. Биохимический анализ крови

Основные компоненты и функции крови. Особенности развития, строения и химического состава эритроцитов. Транспорт кислорода кровью. Карбоксигемоглобин. Метгемоглобин. Транспорт двуокиси углерода кровью. Гемоглобин плода (НЬF) и его физиологическое значение. Гемоглобинопатии. Анемические гипоксии.

Биосинтез гема. Распад гема. Обезвреживание билирубина. "Прямой", "непрямой" билирубин. Нарушения обмена билирубина. Желтухи: гемолитическая, обтурационная, печеночно-клеточная. Желтуха новорожденных. Диагностическое значение определения билирубина и других желчных пигментов в крови и моче. Обмен железа; трансферрин и ферритин. Железодефицитные анемии. Идиопатический гемохроматоз.

Белки сыворотки крови. Альбумин и его функции. Глобулины. Ферменты крови. Калликреин - кининовая система.

Свертывание крови. Внутренняя и внешняя системы свертывания. Каскадный механизм активации ферментов, участвующих в свертывании крови. Превращение фибриногена в фибрин, образование тромба. Роль витамина К в свертывании крови. Противосвертывающая система. Плазминогенин и плазмин, гидролиз фибрина. Антитромбины и гепарин, Тромботические и геморрагические состояния. Активаторы плазминогена и протеолитические ферменты как тромболитические лекарственные средства. Наследственные гемофилии. Клиническое значение биохимического анализа крови. Биохимический анализ крови, его диагностическое значение и контроль течения заболевания.

Буферные системы крови, нарушения кислотно-основного состояния (ацидоз и алкалоз), причины и проявления.

Тема 6. Биохимия иммунной системы.

Основные белки иммунной системы иммуноглобулины (антитела), Т-рецепторы, белки главного комплекса гистосовместимости (ГКГ).

Строение антител. Специфичность взаимодействия с антигеном. Представление о строении и функциях Т-рецепторов и белков ГКГ.

Механизмы обезвреживания чужеродных макромолекул (в том числе бактериальных токсинов), бактерий, вирусов, собственных мутантных клетокПонятие об активном комплементе. Роль активных форм кислорода в бактерицидном действии фагоцитирующих лейкоцитов.

Цитокины и интерлейкины. Апоптоз клеток.

Первичный и вторичный иммунный ответ. Реакция иммунной системы на трансплантант Механизмы возникновения и основные проявления иммунодефицитности. . Реакции преципитации и агглютинации и их значение в диагностике заболеваний.. Иммунодиагностика и иммунотерапия.

Форма А Страница 15 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Тема 7. Биохимия печени.

Механизмы обезвреживания токсичных веществ как одна из важнейших функций печени.

Понятие "токсичность". Эндогенные и экзогенные (чужеродные) токсические вещества. Метаболизм чужеродных веществ: реакции микросомального окисления и реакции конъюгации с глутатином, глюкуроновой кислотой, серной кислотой.

Белок множественной лекарственной устойчивости. Металлотионеин и обезвреживание ионов тяжелых металлов. Белки теплового шока. Токсичность кислорода: образование активных форм кислорода, их действие на липиды и другие вещества. Повреждение мембран в результате перекисного окисления липидов. Механизмы защиты от токсического действия кислорода: супероксиддисмутаза, каталаза, глутатионпероксидаза. Витамин Е и другие антиксиданты. Представление о химическом канцерогенезе.

Тема 8. Биохимия нервной системы. Биохимия памяти.

Химический состав нервной ткани. Миелиновые мембраны: особенности состава и структуры. Энергетический обмен в нервной ткани; значение анаэробного распада глюкозы в анаэробных условиях. Биохимия возникновения и проведения нервного импульса. Молекулярные механизмы синаптической передачи. Медиаторы: ацетилхолин, катехоламины, серотонин, гаммааминомасляная кислота, глутаминовая кислота, глицин, гистамин. Нарушения обмена биогенных аминов при психических заболеваниях. Предшественники катехоламинов и ингибиторы моноаминооксидазы в лечении депрессивных состояний. Физиологически активные пептиды мозга (нейропептиды).

Тема 9. Фармацевтическая биохимия. Метаболизм лекарств.

Фармацевтическая биохимия. Применение биохимических знаний и методов в технологии лекарств, фармацевтической химии, фармакологии. Использование ферментов в медицине и фармацевтической промышленности. Биохимия — основа биофармации. Лекарства как чужеродные соединения. Судьба лекарств в организме. Фазы метаболизма лекарств: модификация и конъюгация. Основные закономерности метаболизма биогенных и чужеродных лекарственных средств. Роль микросомальных ферментов в метаболизме лекарств. Микросомальная монооксигеназная система. Схема Эстабрука, Гильденбрандта и Барона. Основные микросомальные реакции превращения лекарств в организме: окислительные, восстановительные, гидролитические.

Немикросомальные превращения лекарств. Конъюгационные реакции превращения лекарств в организме. Факторы, влияющие на метаболизм лекарств. Индукторы и ингибиторы синтеза микросомальных ферментов.

6. ТЕМЫ ПРАКТИЧЕСКИХ И СЕМИНАРСКИХ ЗАНЯТИЙ

Не предусмотрены

7. ЛАБОРАТОРНЫЕ РАБОТЫ (ЛАБОРАТОРНЫЙ ПРАКТИКУМ)

- 1. Еникеев, Э. Ш. Руководство для лабораторно-практических работ по биологической химии: для 2 курса мед. фак. спец. 060101 "Лечебное дело" и 060103 "Педиатрия" / Э. Ш. Еникеев, Н. В. Терехина; УлГУ, ИМЭиФК. Ульяновск: УлГУ, 2016. 52 с.
- 2. Еникеев, Э. Ш. Руководство для лабораторно-практических работ по биологической химии: для 1 курса мед. фак. спец. 060101 "Лечебное дело" и 060103 "Педиатрия" / Э. Ш. Еникеев, Н. В. Терехина; УлГУ, ИМЭиФК. Ульяновск: УлГУ, 2015. 48 с

Форма А Страница 16 из 27

8. ТЕМАТИКА КУРСОВЫХ, КОНТРОЛЬНЫХ РАБОТ, РЕФЕРАТОВ Не предусмотрены.

9. ПЕРЕЧЕНЬ ВОПРОСОВ К ЭКЗАМЕНУ

- 1. Предмет, задачи, методы и место биохимии среди других медицинских и биологических дисциплин.
- 2. Водорастворимые витамины и их функции. Витаминоподобные вещества. Микроэлементы.
- 3. Общая характеристика жирорастворимых витаминов и витаминоподобных веществ, их биологическое значение.
 - 4. Классификация липидов, их химические свойства и биологические функции.
- 5. Общая характеристика биологических функций белков (каталитическая, регуляторная, рецепторная, транспортная, структурная, сократительная, геннорегуляторная, трофическая, иммунологическая и др.).
- 6. Роль белков в жизнедеятельности организма. Классификация белков. Современные представления о структуре белков: состав, возможные уровни структурной организации. Классификация аминокислот. Связь между аминокислотным составом и видом вторичной структуры белка.
- 7. Пептидная связь и ее характерные черты. Первичная структура белков и ее свойства. Вторичная структура белков: виды, факторы стабилизации.
- 8. Третичная структура белка. Глобулярные и фибриллярные белки. Связи, стабилизирующие третичную структуру белков. Примеры организации третичной структуры фибриллярных белков.
- 9. Принципы организации четвертичной структуры белков. Кооперативные изменения конформации субъединиц. Параллельная и последовательная схема действия аллостерических ферментов как пример реализации кооперативных эффектов.
 - 10. Денатурация и ренатурация белков. Денатурирующие факторы.
- 11. Классификация, структурные компоненты и биологические функции сложных белков (хромопротеины, гемопротеины, флавопротеины, металлопротеины).
 - 12. Способы разделения и очистки белков.
- 13. Денатурация и ренатурация нуклеиновых кислот. Молекулярная гибридизация нуклеиновых кислот.
 - 14. Понятие о ферментах. Структурно-функциональная организация ферментов.
 - 15. Классификация и номенклатура ферментов.
- 16. Общие принципы ферментативного катализа. Отличия ферментов от неорганических катализаторов.
- 17. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от концентрации субстрата, фермента, факторов среды (рН, температуры).
 - 18. Уравнение Михаэлиса-Ментен. Метод Лайнуивера-Берка.
- 19. Механизм действия ферментов. Специфичность действия ферментов (реакционная, стереохимическая, субстратная; абсолютная, групповая). Структура и роль каталитического центра.
- 20. Кофакторы и коферменты, их значение для деятельности ферментов. Коферментные функции витаминов.
- 21. Регуляция активности ферментов. Ковалентная модификация. Аллостерическая регуляция, каталитические и регуляторные центры. Понятие об иммобилизированных ферментах и их применение в медицине.
- 22. Ингибирование активности ферментов: обратимое и необратимое; конкурентное, неконкурентное и бесконкурентное. Отображение ингибирования на графиках Михаэлиса Форма А

 Страница 17 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

- Ментен и Лайнуивера Берка. Изменение параметров ферментов при ингибировании.
 - 23. Применение ферментов в медицине. Энзимотерапия и энзимодиагностика.
- 24. Структурные компоненты нуклеиновых кислот. Биологическое значение и функции нуклеиновых кислот. Нуклеиновые кислоты как компоненты пищи. Переваривание нуклеиновых кислот в ЖКТ, всасывание и транспорт их компонентов.
 - 25. Вторичная и третичная структура РНК. Типы РНК и их функции.
- 26. Строение и уровни организации нуклеиновых кислот. Первичная структура нуклеиновых кислот. Видовые различия первичной структуры нуклеиновых кислот.
 - 27. Вторичная и третичная структура ДНК. Строение и организация хроматина.
- 28. Репликация ДНК как один из видов матричных синтезов. Этапы репликации. Особенности процесса в эукариотических клетках.
- 29. Репликация плазмид. Особенности репликации вирусного генома. Интерфероны, их биологическое действие и применение в медицине.
- 30. Биосинтез РНК (транскрипция). Строение РНК полимеразы. Зависимость локализации считываемого участка и направления считывания от структуры промотора. Этапы транскрипции. Посттранскрипционная модификация РНК. Процессинг РНК.
- 31. Основной постулат молекулярной биологии. Генетический код и его характерные черты. Акцепторная роль тРНК. Синтез аминоацил -тРНК как регуляторный механизм трансляции.
- 32. Этапы трансляции. Состав трансляционного аппарата клетки. Строение и механизм функционирования рибосом. Роль РНК в процессе трансляции. Участие белковых комплексов инициации, элонгации и терминации в биосинтезе полипептидной цепи.
- 33. Регуляция биосинтеза белка на уровне репликации и транскрипции. Регуляция биосинтеза белка на этапе трансляции. Посттрансляционная модификация белков.
 - 34. Теория оперонной регуляции транскрипции. Функции и особые зоны промотора.
- 35. Молекулярные механизмы генетической изменчивости. Виды и причины мутаций, связь между мутагенными факторами и типом мутации.
- 36. Классификация мутаций. Геномные мутации. Нерепарируемые мутации и их последствия.
- 37. Генные мутации и соответствующие им мутагенные факторы. Репарация как способ исправления генных мутаций.
- 38. Система групп крови как пример аллельной системы. Правила переливания крови.
 - 39. Иммунитет и его виды. Компоненты иммунной системы. Роль лимфоцитов.
 - 40. Строение, свойства и типы антител. Индукция разнообразия антител.
- 41.Структурная организация и свойства биологических мембран. Роль компонентов мембраны в обеспечении ее функций.
- 42. Транпорт веществ через мембрану: классификация, общие принципы, способы переноса и виды переносчиков.
 - 43. Эндоцитоз и экзоцитоз как способы трансмембранного переноса веществ.
 - 44. Метаболизм и его категории. Характерные черты метаболизма. Общие принципы организации обмена веществ.
- 45. Характерные черты и категории метаболизма. Компартментализация как способ организации живых систем. Уровни и принципы регуляции метаболизма.
 - 46. Общий путь катаболизма
- 47. Окислительное декарбоксилирование пирувата: реакции, характеристика и состав полиферментного комплекса. Медицинские аспекты.
- 48. Цикл Кребса: последовательность реакций, биохимическое значение, регуляция. Восстановительные эквиваленты как носитель энергии. Типы дегидрогеназ.

Форма А Страница 18 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

- 49. Анаплеротические реакции как способ регуляции скорости ЦТК и его сопряжения с другими метаболическими блоками.
- 50. Челночные механизмы и их роль в обеспечении бесперебойного функционирования и регуляции метаболических процессов. Важность существования пулов ключевых метаболитов и носителей энергии, их участие в запуске и контроле обмена веществ.
- 51. Аккумуляция и пути утилизации энергии в клетках. Способы получения энергии, носители энергии.
- 52. Структура и функции дыхательной цепи. Роль дыхательной цепи в создании и поддержании протонного электрохимического градиента. Градиент как носитель энергии.
- 53. Механизмы окислительного фосфорилирования, локализация пунктов фосфорилирования в дыхательной цепи, сопряжение и разобщение дыхания и фосфорилирования.
- 54. Взаимоотношение анаэробных и аэробных путей продукции энергии и его изменения в зависимости от степени обеспеченности тканей кислородом (эффект Пастера). Энергетическая ценность анаэробного и аэробного расщепления углеводов.
 - 55. Роль углеводов в энергетическом обеспечении обмена веществ.
- 56. Гликолиз: последовательность реакций, регуляция. Энергетический баланс и биологическое значение гликолиза.
- 57. Пентозофосфатный путь: реакции, взаимосвязь с гликолизом, биологические функции.
- 58. Биосинтез углеводов в тканях. Реакции глюконеогенеза и гликогеногенеза, углеводные и неуглеводные источники для глюконеогенеза, взаимоотношение процессов синтеза и распада гликогена.
 - 59. Биосинтез и распад гликогена. Регуляция обмена гликогена.
 - 60. Глюконеогенез: реакции, регуляция. Роль глюконеогенеза в обмене углеводов.
 - 61. Нарушения обмена углеводов.
- 62. Гликогенозы, причины, сущность, проявления заболевания. Значение нарушений активности глюкозо-6-фосфатазы, кислой альфа-глюкозидазы, фосфорилазы, фосфоглюкомутазы, фосфофруктокиназы. Болезнь Гирке.
- 63. Сахарный диабет: причины, типы, сущность нарушений углеводного, липидного, белкового обменов, принципы диагностики и лечения, осложнения.
 - 64. Галактоземия, причины, сущность, проявления заболевания.
 - 65. Переваривание и всасывание липидов в ЖКТ, транспорт в кровотоке.
- 66. Классы липопротеинов, их состав и функции в транспорте липидов. Перенос триацилглицеролов и холестерола в клетки.
- $67.~\beta-$ окисление жирных кислот. Окисление ненасыщенных жирных кислот с четным и нечетным числом углеродных атомов.
 - 68. Нарушения обмена липидов.
- 69. Биосинтез жирных кислот. Особенности синтеза ненасыщенных жирных кислот. Незаменимые жирные кислоты. Синтез длинноцепочечных насыщенных и ненасыщенных жирных кислот.
- 70. Синтез кетоновых тел. Роль кетоновых тел. Биосинтез холестерина и его производных. Роль холестерина в организме.
- 71. Причины и типы гипо- и гиперлипопротеинемий. Атеросклероз, этапы атерогенеза. Функции холестерина в организме человека. Профилактика атеросклероза.
- 72. Переваривание белков в ЖКТ. Специфичность действия протеолитических ферментов. Всасывание и транспорт аминокислот.
- 73. Общие пути катаболизма аминокислот. Значение реакции дезаминирования, трансаминирования и декарбоксилирования. Судьба альфа-кетокислот. Глюкогенные и

Форма А Страница 19 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

кетогенные аминокислоты. Диагностическое значение активности трансаминаз в сыворотке крови.

- 74. Окислительный катаболизм аминокислот: возможные пути расщепления углеродного скелета, утилизация аминного азота, радикалов.
- 75. Обмен одноуглеродных групп как способ изменения углеродного скелета при биосинтезе аминокислот и нуклеотидов. Обмен серина, глицина и треонина.
- 76. Обмен фенилаланина и тирозина. Фенилкетонурия: причины и сущность болезни. Диагностика фенилкетонурии.
 - 77. Метаболизм метиона.
 - 78. Метаболизм гистидина.
- 79. Синтез, роль и функции биогенных аминов и медиаторов (серотонина, катехоламинов, гистамина, адреналина, гамма-аминомасляной кислоты).
- 80. Пути обезвреживания аммиака в организме. Реакции, протекающие с образованием аммиака. Цикл мочевины. Азотистый баланс.
- 81. Общие принципы регуляции обмена аминокислот. Нарушения обмена аминокислот и белков. Применение аминокислот в качестве лекарственных препаратов.
- 82. Биосинтез и распад пуриновых нуклеотидов. Регуляция биосинтеза пуриновых нуклеотидов.
- 83. Реутилизация пуриновых оснований. Гиперурикемия. Синдром Леша-Нихана. Подагра, причины и сущность заболевания, принципы лечения.
- 84. Биосинтез и распад пиримидиновых нуклеотидов: этапы, регуляция. Оротоцидурия.
 - 85. Биосинтез дезоксирибонуклеотидов.
 - 86. Биосинтез тимидиловых нуклеотидов.
 - 87. Пути регуляции активности ферментов. Метаболическая регуляция.
- 88. Гормональная регуляция метаболизма. Понятие о гормонах, их биологическое значение. Классификация гормонов.
- 89. Роль гормонов в обеспечении межклеточной сигнализации. Трансмембранная передача сигналов в клетку. Мембранные и внутриклеточные рецепторы.
 - 90. Механизмы действия пептидных гормонов. Роль и виды вторичных посредников.
- 91. Структура, функции и механизм действия стероидных гормонов. Биосинтез и катаболизм стероидов и стероидных гормонов.
 - 92. Гормоны гипоталамуса. Строение и регуляторные функции.
 - 93. Гормоны гипофиза. Строение и регуляторные функции.
 - 94. .Регуляция водно солевого обмена. Нарушения водно солевого обмена.
 - 95. Гормональная регуляция мочеобразования.
- 96. Регуляция обмена углеводов в организме. Роль инсулина и контринсулярных гормонов (глюкагона, адреналина, тироксина, глюкокортикостероидов) в регуляции обмена углеводов. Гипо- и гипергликемия. Гипо- и гиперинсулинизм.
 - 97. Гормональная регуляция обмена углеводов, белков и жиров.
- 98. Гормоны щитовидной и паращитовидной желез, их синтез и физиологическое действие. Характеристика патологических состояний, связанных с нарушением функции этих желез (гипо- и гипертиреозы).
- 99. Половые гормоны: биосинтез, регуляция биосинтеза, физиологическое действие, применение в медицине. Половой цикл и его регуляция.
- 100. Роль кальция и фосфатов в жизнедеятельности организма человека. Гормональная регуляция обмена кальция и фосфатов. Нарушения обмена кальция и фосфатов.
- 101. Простаноиды: биосинтез, влияние на обменные процессы и физиологическую функцию внутренних органов, применение в медицине.

Форма А Страница 20 из 27

- 102. Биохимические процессы, обеспечивающие мочеобразование. Регуляция мочеобразовательной функции. Нарушения мочеобразования, причины, проявления. Особенности биохимии почек.
- 103. Общие свойства мочи (количество, цвет, плотность, реакция), изменения при патологии. Основные химические компоненты мочи, их возможные изменения при заболеваниях. Факторы, способствующие образованию мочевых камней.
- 104. Кровь: составные компоненты, основные функции (транспортная, осморегулирующая, буферная, иммунологическая, регуляторная, гемостатическая) и их характеристика.
 - 105. Характеристика белковых фракций крови.
- 106. Механизмы, обеспечивающие кислородтранспортную функцию крови, и их нарушения при гемической гипоксии (отравление окисью углерода, метгемоглобинобразователями), генетические аномалии гемоглобина.
- 107. Синтез гемоглобина и его регуляция. Нормальные и аномальные формы гемоглобина. Гемоглобинопатии, порфирии. Трансферрины и ферритин.
- 108. Современные представления о механизмах свертывания крови и фибринолиза. Причины и проявления гемофилий и тромбозов, принципы лечения.
- 109. Буферные системы крови. Нарушения кислотно-основного состояния (ацидоз и алкалоз), причины и проявления.
- 110. Особенности биохимии печени. Основные метаболические процессы в печени. Биохимические механизмы обезвреживания лекарственных и токсических веществ в печени. Роль процессов микросомального окисления. Конъюгация.
- 111. Катаболизм гемоглобина в печени. Патология обмена желчных пигментов Конъюгированная и неконъюгированная билирубинемии. Паренхиматозная, гемолитическая и обтурационная желтуха.
- 112. Микросомальное (монооксигеназное) окисление: механизм, эндогенные и экзогенные субстраты окисления, роль в обеспечении обезвреживающей функции печени, индукторы и ингибиторы.
- 113. Токсическое действие кислорода. Клеточные системы, блокирующие развитие свободнорадикальных процессов. Антиоксидантное действие витаминов.
- 114. Источники энергии для мышечного сокращения. Энергообеспечение мышечной работы при физических нагрузках различной интенсивности. Трупное окоченение.
- 115. Особенности химического состава мышечной ткани. Строение сократительных элементов (миозин, актин) и регуляторных белков (тропонин, тропомиозин).
- 116. Современные представления о строении и механизме сокращения гладких и поперечно – полосатых мышц.
 - 117. Особенности обмена углеводов, азота и источников энергии в мышечной ткани.
 - 118. Биохимия нервной ткани. Особенности липидного и белкового состава.
 - 119. Особенности обмена аминокислот в мозге.
 - 120. Особенности энергетического обмена мозга.
- 121. Нейротрансмиттерные системы. Образование, биологическая роль и инактивация нейромедиаторов.
- 122. Биохимические основы генерации и проведения нервных импульсов. Характеристика нейромедиаторного процесса и веществ, обладающих нейромедиаторными свойствами (синтез, депонирование, выброс в синаптическую щель, деградация, обратный захват нейромедиаторов).
- 123. Строение и функции основных компонентов межклеточного матрикса (коллаген, эластин, гликозамингликаны, протеогликаны, фибронектин). Принципы организации межклеточного матрикса.

Форма А Страница 21 из 27

124. Синтез коллагена. Причины и следствия биохимических изменений соединительной ткани при старении и заболеваниях (коллагенозах).

10. САМОСТОЯТЕЛЬНАЯ РАБОТА СТУДЕНТОВ

Содержание, требования, условия и порядок организации самостоятельной работы обучающихся с учетом формы обучения определяется в соответствии с «Положением об организации самостоятельной работы обучающихся», утвержденным Ученым советом УлГУ (протокол № 8/268 от 26.03.19 г.).

Форма обучения: очная.

Название тем	Количе- ство часов	Форма контроля
1. Предмет, задачи и история развития биохимии. Связь с медициной.	3	Включение вопросов при защите лабораторных работ, на экзамене
2. Строение, свойства и функции белков	3	Включение вопросов при защите лабораторных работ, на экзамене
3. Ферменты, классификация, строение, свойства, функции и механизм действия	3	Включение вопросов при защите лабораторных работ, на экзамене
4. Строение и функции нуклеиновых кислот	3	Включение вопросов при защите лабораторных работ, на экзамене
5. Биосинтез нуклеиновых кислот и белка	3	Включение вопросов при защите лабораторных работ, на экзамене
6. Молекулярные механизмы генетической изменчивости	3	Включение вопросов при защите лабораторных работ, на экзамене
7. Введение в обмен веществ. Витамины.	3	Включение вопросов при защите лабораторных работ, на экзамене
8. Биологические мембраны. Транспорт веществ через мембрану	3	Включение вопросов при защите лабораторных работ, на экзамене
9. Энергетический обмен.	3	Включение вопросов при защите лабораторных работ, на экзамене
10. Общий путь катаболизма	3	Включение вопросов при защите лабораторных работ, на экзамене
11. Обмен и функции углеводов	4	Включение вопросов при защите лабораторных работ, на экзамене
12. Обмен и функции липидов	4	Включение вопросов при защите лабораторных работ, на экзамене
13. Обмен и функции аминокислот	3	Включение вопросов при защите лабораторных работ, на экзамене
14. Обмен и функции нуклеотидов	4	Включение вопросов при защите лабораторных работ, на экзамене

Форма А Страница 22 из 27

	T	
15. Гормональная регуляция обмена веществ. Гормоны гипоталамуса и гипофиза. Гормональная регуляция углеводного, белкового и липидного обмена; водно-минерального обмена. Роль почек в регуляции водноминерального обмена.	4	Включение вопросов при защите лабораторных работ, на экзамене
16. Регуляция обмена Ca ²⁺ и фосфатов. Половые гормоны. Гормоны щитовидной железы. Гормоны местного действия	4	Включение вопросов при защите лабораторных работ, на экзамене
17. Биохимия межклеточного матрикса	3	Включение вопросов при защите лабораторных работ, на экзамене
18. Биохимия мышц	3	Включение вопросов при защите лабораторных работ, на экзамене
19. Биохимия крови. Биохимический анализ крови	3	Включение вопросов при защите лабораторных работ, на экзамене
20. Биохимия иммунной системы.	3	Включение вопросов при защите лабораторных работ, на экзамене
21. Биохимия печени	4	Включение вопросов при защите лабораторных работ, на экзамене
22. Биохимия нервной системы. Биохимия памяти.	1	Включение вопросов при защите лабораторных работ, на экзамене
23. Фармацевтическая биохимия. Метаболизм лекарств.	2	Включение вопросов при защите лабораторных работ, на экзамене
Итого	72	

Форма А Страница 23 из 27

11. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Список рекомендуемой литературы

Основная литература

- 1. Комов, В. П. Биохимия в 2 ч. Часть 1. : учебник для академического бакалавриата / В. П. Комов, В. Н. Шведова ; под общей редакцией В. П. Комова. 4-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 333 с. (Бакалавр. Академический курс). ISBN 978-5-534-02059-5. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/444950.
- 2. Комов, В. П. Биохимия в 2 ч. Часть 2. : учебник для академического бакалавриата / В. П. Комов, В. Н. Шведова ; под общей редакцией В. П. Комова. 4-е изд., испр. и доп. Москва : Издательство Юрайт, 2019. 315 с. (Бакалавр. Академический курс). ISBN 978-5-534-02061-8. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/444951.
- 3. Северин, Е.С., Биохимия : учебник / под ред. Е. С. Северина. 5-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2016. 768 с. ISBN 978-5-9704-3762-9 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785970437629.html

Дополнительная литература

- 1. Северин, С.Е., Биологическая химия с упражнениями и задачами / под ред. С.Е. Северина М. : ГЭОТАР-Медиа, 2014. 624 с. ISBN 978-5-9704-3027-9 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785970430279.html
- 2. Вавилова, Т.П., Биологическая химия в вопросах и ответах : учеб. пособие / Т.П. Вавилова, О.Л. Евстафьева. 3-е изд., испр. и доп. М. : ГЭОТАР-Медиа, 2016. 128 с. ISBN 978-5-9704-3674-5 Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : http://www.studentlibrary.ru/book/ISBN9785970436745.

Учебно-методическая литература

- 1. Дрюк, В. Г. Биологическая химия : учебное пособие для вузов / В. Г. Дрюк, С. И. Скляр, В. Г. Карцев. 2-е изд., перераб. и доп. Москва : Издательство Юрайт, 2019. 292 с. (Высшее образование). ISBN 978-5-534-12077-6. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/448161
- 2. Еникеев Э. Ш., Биохимия: методические указания для самостоятельной работы студентов специальности 31.05.02 «Педиатрия» / Э. Ш. Еникеев, Н. В. Терехина; УлГУ, ИМЭиФК. Ульяновск: УлГУ, 2019. Загл. с экрана; Неопубликованный ресурс. Электрон. текстовые дан. (1 файл : 697 КБ). Текст : электронный. http://lib.ulsu.ru/MegaPro/Download/MObject/6769

Согласовано:

Главный библиотекарь Мажукина С. Н.

лицсь дата

Форма А Страница 24 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

Профессиональные базы данных, информационно-справочные системы

1. Электронно-библиотечные системы:

- 1.1. IPRbooks : электронно-библиотечная система : сайт / группа компаний Ай Пи Ар Медиа. Саратов, [2019]. URL: http://www.iprbookshop.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.2. ЮРАЙТ : электронно-библиотечная система : сайт / ООО Электронное издательство ЮРАЙТ. Москва, [2019]. URL: https://www.biblio-online.ru. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.3. Консультант студента : электронно-библиотечная система : сайт / ООО Политехресурс. Москва, [2019]. URL: http://www.studentlibrary.ru/catalogue/switch_kit/x2019-128.html. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.4. Лань : электронно-библиотечная система : сайт / ООО ЭБС Лань. Санкт-Петербург, [2019]. URL: https://e.lanbook.com. Режим доступа: для зарегистрир. пользователей. Текст : электронный.
- 1.5. **Znanium.com**: электронно-библиотечная система: сайт / ООО Знаниум. Москва, [2019]. URL: http://znanium.com. Режим доступа: для зарегистрир. пользователей. Текст: электронный.
- 1.6. Clinical Collection : коллекция для медицинских университетов, клиник, медицинских библиотек// EBSCOhost : [портал]. URL: http://web.a.ebscohost.com/ehost/search/advanced?vid=1&sid=e3ddfb99-a1a7-46dd-a6eb-2185f3e0876a%40sessionmgr4008. Режим доступа : для авториз. пользователей. Текст : электронный.
- **2. КонсультантПлюс** [Электронный ресурс]: справочная правовая система. /ООО «Консультант Плюс» Электрон. дан. Москва : КонсультантПлюс, [2019].

3. Базы данных периодических изданий:

- 3.1. База данных периодических изданий : электронные журналы / ООО ИВИС. Москва, [2019]. URL: https://dlib.eastview.com/browse/udb/12. Режим доступа : для авториз. пользователей. Текст : электронный.
- 3.2. eLIBRARY.RU: научная электронная библиотека: сайт / ООО Научная Электронная Библиотека. Москва, [2019]. URL: http://elibrary.ru. Режим доступа: для авториз. пользователей. Текст: электронный
- 3.3. «Grebennikon» : электронная библиотека / ИД Гребенников. Москва, [2019]. URL: https://id2.action-media.ru/Personal/Products. Режим доступа : для авториз. пользователей. Текст : электронный.
- **4. Национальная электронная библиотека** : электронная библиотека : федеральная государственная информационная система : сайт / Министерство культуры РФ ; РГБ. Москва, [2019]. URL: https://нэб.рф. Режим доступа : для пользователей научной библиотеки. Текст : электронный.
- **5.SMART** Imagebase // EBSCOhost : [портал]. URL: https://ebsco.smartimagebase.com/?TOKEN=EBSCO1a2ff8c55aa76d8229047223a7d6dc9c&custid=s689 5741. Режим доступа : для авториз. пользователей. Изображение : электронные.

6. Федеральные информационно-образовательные порталы:

- 6.1. Единое окно доступа к образовательным ресурсам : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: http://window.edu.ru/. Текст : электронный.
- 6.2. Российское образование : федеральный портал / учредитель ФГАОУ ДПО ЦРГОП и ИТ. URL: http://www.edu.ru. Текст : электронный.

7. Образовательные ресурсы УлГУ:

- 7.1. Электронная библиотека УлГУ: модуль АБИС Mera-ПРО / ООО «Дата Экспресс». URL: http://lib.ulsu.ru/MegaPro/Web. Режим доступа: для пользователей научной библиотеки. Текст: электронный.
- 7.2. Образовательный портал УлГУ. URL: http://edu.ulsu.ru. Режим доступа : для зарегистр. пользователей. Текст : электронный.

огласовано:			
ам нач УИТиТ	ΑR	Клочкова	THE Day

<u>Зам.нач. УИТиТ</u> <u>А.В. Клочкова</u> *Шеве* <u>2019 г</u> Форма А Страница 25 из 27

12. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория № 208 для проведения лабораторных занятий. Помещение укомплектовано комплектом ученической мебели на 20 посадочных мест. Технические средства: доска аудиторная, вытяжные шкафы, лабораторные столы Лабораторное оборудование: термостаты, колориметры, центрифуги, термометры, водяные бани, наборы химической посуды и химических реактивов, комплект таблиц. Рабочее место для преподавателя Площадь 43 кв. м

Учебная аудитория 342 для проведения лекций, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (с набором демонстрационного оборудования для обеспечения тематических иллюстраций в соответствии с рабочей программой дисциплины). Помещение укомплектовано специализированной мебелью на 24 посадочных мест и техническими средствами: экран настенный, доска аудиторная. Рабочее место преподавателя, WI-FI, интернет. Площадь 42,93 кв.м.

Учебная аудитория для самостоятельной работы студентов 230 с доступом к ЭБС. для самостоятельной работы студентов, Wi-Fi с доступом к ЭИОС, ЭБС. Компьютерный класс укомплектованный специализированной мебелью на 32 посадочных мест и техническими средствами обучения (16 персональных компьютеров) с доступом к сети «Интернет», ЭИОС, ЭБС. Площадь 93,51 кв.м.

Читальный зал научной библиотеки (аудитория 237) с зоной для самостоятельной работы, Wi-Fi с доступом к ЭИОС, ЭБС. Аудитория укомплектована специализированной мебелью на 80 посадочных мест и оснащена компьютерной техникой с доступом к сети «Интернет», ЭИОС, ЭБС, экраном и проектором. Площадь 220,39 кв.м.

13. СПЕЦИАЛЬНЫЕ УСЛОВИЯ ДЛЯ ОБУЧАЮЩИХСЯ С ОГРАНИЧЕННЫ-МИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучающиеся с OB3 и инвалиды проходят практику совместно с другими обучающимися (в учебной группе) или индивидуально (по личному заявлению обучающегося).

Определение мест прохождения практики для обучающихся с ОВЗ и инвалидов осуществляется с учетом состояния здоровья и требований к их доступности для данной категории обучающихся. При определении мест и условий (с учётом нозологической группы и группы инвалидности обучающегося) прохождения учебной и производственной практик для данной категории лиц учитываются индивидуальные особенности обучающихся, а также рекомендации медико-социальной экспертизы, отраженные в индивидуальной программе реабилитации, относительно рекомендованных условий и видов труда.

При определении места практики для обучающихся с ОВЗ и инвалидов особое внимание уделяется безопасности труда и оснащению (оборудованию) рабочего места. Рабочие места на практику предоставляются профильной организацией в соответствии со следующими требованиями:

- для обучающихся с OB3 и инвалидов по зрению слабовидящих: оснащение специального рабочего места общим и местным освещением, обеспечивающим беспрепятственное нахождение указанным лицом своего рабочего места и выполнение индивидуального задания; наличие видеоувеличителей, луп;
- для обучающихся с OB3 и инвалидов по зрению слепых: оснащение специального рабочего места тифлотехническими ориентирами и устройствами, с возможностью использования крупного рельефно-контрастного шрифта и шрифта Брайля, акустическими навигационными средствами, обеспечивающими беспрепятственное нахождение ука-

Форма А Страница 26 из 27

Министерство науки и высшего образования РФ Ульяновский государственный университет	Форма	
Ф - Рабочая программа по дисциплине		

занным лицом своего рабочего места и выполнение индивидуального задания;

- для обучающихся с OB3 и инвалидов по слуху слабослышащих: оснащение (оборудование) специального рабочего места звукоусиливающей аппаратурой, телефонами для слабослышащих;
- для обучающихся с **OB3** и инвалидов по слуху глухих: оснащение специального рабочего места визуальными индикаторами, преобразующими звуковые сигналы в световые, речевые сигналы в текстовую бегущую строку, для беспрепятственного нахождения указанным лицом своего рабочего места и выполнения индивидуального задания;
- для обучающихся с OB3 и инвалидов с нарушением функций опорнодвигательного аппарата: оборудование, обеспечивающее реализацию эргономических принципов (максимально удобное для инвалида расположение элементов, составляющих рабочее место); механизмы и устройства, позволяющие изменять высоту и наклон рабочей поверхности, положение сиденья рабочего стула по высоте и наклону, угол наклона спинки рабочего стула; оснащение специальным сиденьем, обеспечивающим компенсацию усилия при вставании, специальными приспособлениями для управления и обслуживания этого оборудования.

Условия организации и прохождения практики, подготовки отчетных материалов, проведения текущего контроля и промежуточной аттестации по практике обеспечиваются в соответствии со следующими требованиями:

- Объем, темп, формы выполнения индивидуального задания на период практики устанавливаются индивидуально для каждого обучающегося указанных категорий. В зависимости от нозологии максимально снижаются противопоказанные (зрительные, звуковые, мышечные и др.) нагрузки.
- Учебные и учебно-методические материалы по практике представляются в различных формах так, чтобы обучающиеся с ОВЗ и инвалиды с нарушениями слуха получали информацию визуально (документация по практике печатается увеличенным шрифтом; предоставляются видеоматериалы и наглядные материалы по содержанию практики), с нарушениями зрения аудиально (например, с использованием программ-синтезаторов речи) или с помощью тифлоинформационных устройств.
- Форма проведения текущего контроля успеваемости и промежуточной аттестации для обучающихся с ОВЗ и инвалидов устанавливается с учетом индивидуальных психофизических особенностей (устно, письменно, при помощи компьютера, в форме тестирования и т.п.). При необходимости, обучающемуся предоставляется дополнительное время для подготовки ответа и (или) защиты отчета.

Разработчики:

доценты кафедры общей и

биологической химии, к.б.н Еникеев Э.Ш.

Терёхина Н.В.

2019 г

2019 г

Форма A Страница 27 из 27